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ABSTRACT

A method for tracking neutrons through a slab penetrated by a helical voided duct is
presented and verified. FORTRAN listings of computer subroutines that perform the
numerical analysis are included; these subroutines are designed to be used with FASTER,
a high-efficiency Monte Carlo code. Neutron number spectra were calculated at several
points in and near the emergent end of a duct through a 20- and a 100-centimeter thick
water slab having a point source at the center of the inlet.
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HELICAL DUCT GEOMETRY ROUTINE FOR THE SHIELDING
COMPUTER PROGRAM "'FASTER"
by Thomas M. Jordan™ and Millard L. Wohl

Lewis Research Center

SUMMARY

A method for tracking neutrons through slabs penetrated by helical voided ducts is
presented and verified by means of the FASTER computer code. A point fission source
is located at the center of the entrant mouth of the duct. Neutron number spectra com-
puted at point detectors in and near the emergent mouth of the duct are compared with
similar results computed by the FASTER code and the O5R code using cylindrical geom-
etry to describe the duct. The helical duct is given a very large pitch to simulate a
cylindrical duct within the slabs considered. The comparison of number spectra is al-
most exact, verifying the techniques developed herein. FORTRAN listings of computer
subroutines that perform the numerical analysis are included; these subroutines are
designed to be used in conjunction with FASTER, a high-efficiency Monte Carlo code.

INTRODUCTION

A useful reactor coolant flow passage geometry is that of a helicoid, or a helical
tubular duct. This duct configuration has the dual advantage of reducing radiation stream-
ing through a shield and permitting low coolant pressure drop.

In order to track neutrons and gamma rays through such a ecomplex geometric con-
figuration, subroutines are written to be used with the FASTER code. Sample problems
(ref. 1), previously run with cylindrical ducts with the FASTER and O5R codes, were
solved using a helical duct; this was done by assigning a pitch of 105 centimeters to a
helicoid penetrating a 20- and a 100-centimeter-thick water slab. Thus, the important
within-slab region of the helicoid is essentially cylindrical.

Agreement was obtained for the neutron number spectrum at several point detectors
in and near the emergent mouth of a duct having a point fission neutron source at the
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center of one end of the duct. This agreement verified the helical duct geometry handling
subroutines.

ANALYSIS

The equation of the helicoid is developed by using the fact that the intersection of the
surface and a cutting plane normal to the centerline of the helicoid is circular. The pa-
rametric equations of the duct centerline are

X =R cos wz (1a)
y = R sin wz (1b)

where w = 27/d, d is the pitch of the helical centerline, and R is the perpendicular
distance from the axis of the cylinder around which the helicoid is wound to the helical
centerline.

A point (the origin of the double primed coordinate system is sketch (a)) is first fixed
at an arbitrary azimuthal angle 6. Solving for the equivalent z-coordinate gives
z, =10 /w. A coordinate system is centered at this point so that its y'-axis is tangent to
the helical centerline and its x'-axis is along the cylindrical radius vector as in sketch (a):

X, X" @

In the primed coordinate system, the intersection of the unwound helical duct with
the cutting plane has the following equation:

22 4 g o2 -

where a is the inner radius of the duct. Performing a rotation ¢ about the x'-axis,
the appropriate transformation equations become
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x' = x" _ (33)

y' =y'" cos ¢ +2'" sin ¢ (3b)
z' = -y" sin @ + 2'' cos ¢ (3c)
sin @ = d ¥ = 1 v (3d)
2 2
Elz + (217R)2] (1 + wZRZ)
cos ¢ = 27R o - wR > (3e)
2
Eiz + (27rR)2:] (1 + szz)
or
x| (-y'" sin @ + 2" cos go)2 = a2 (4)

The double primed coordinate system must also be translated and rotated as indi-
cated in sketch (b) and equations (5).

—N

X" =xcos 0 +ysind -R (5a)
y'*' +-x8in 6 +y cos @ (5b)
z' =7 - 2, (5¢)
so that
(x cos 6 +ysin @ - R)2+ E—xsine +7y cos 6) sin ¢ + (z - zo) cos ga]z =a2 (6)



To put everything in terms of the x, y, and z coordinates, the following relations
are used:

6 = tan'l(.X) sinf=— Y y
X 1/2
)
. . > (7)
z, == tan" (Z> cos 6 = X "
w X 2
(57
The resulting equatibn is
2 —
X X 72 +y y 72 -R| + Xy 7 + Xy 7 sin ¢
2
(xz + y2> (xz + y2> L(xz + yz) (xz + y2>
- 2
+ |z - _1. tan_]‘ (X)i] wR / = a.2 (83.)
w X 1/2
- (1 + szz)
or
2
1/2 2 2
[xz + y2> - ] B [tan"l(z> - wz] - a2 (8b)
1 + w?R2 X

It should be noted that the arctangent function subroutine will return only the principal
value. Therefore, in the actual computations the quantity I:tan'l(y/x) - wz| will be
treated as modulo 7.

Equation (8b) is generalized to the following form:

. 1/2 : -
90(?) = l:(xj - x?)z + (xk - xﬁ)z] -R +—-B-2—— ta.n'1 & xﬁ - w(xi - x?) - a2

1+ w2R2 X, - xg’

where qo(f) is the helicoid surface function and has the following values:



¢(r) =0 on the helicoid surface
>0 outside the surface

< 0 within the surface

and where (i,3,k) = (1,2,3),(2,3,1), or (3,1,2); X;,%9,X3 =X,y,2; and X;,%;,% are

177
coordinates of the origin of a translated coordinate system.

Thus, the following data are normally supplied to describe the helical duct:

. 0
1,x(i),xj ,xo,d,R,a.

VALUES OF THE SURFACE FUNCTION

The computer subroutine has been written to evaluate the surface function at the
point ¥ =7 + s where Fo, Q , and S are arguments supplied to the subroutine. Let

r, = (x*,v*2%) = (x},x5,%x3)
@ = (2,8,7) = (C1,Cy,Cy)
Then
r = (x,7,2) = (X],X9,Xg) = (& + C;S,X§ + CyS,%% + C45) (10)

The value ¢(r) of the surface function is obtained by substituting ¥ from equation (10)
into equation (9).

NORMAL VECTOR

The components of the normal vector n are

H= (nl,nz,n3) (11)



and are calculated as

and
1=1,2,3

The partial derivatives are calculated as _

-a-(-p- = -2whv
axi

-~

3o _ ol -.EffE
0X.. ¢ 2

i 9
3 _ o K . hvxj
axk ¢ CZ

e O 0 0 0
where (Xi’xj’xk) = [(Xi - Xi>, <xj - X >, <Xk - xk>] and

= fly )" (s xgﬂl/z
u=¢-R
S
i 7
h= R2
1+ w’R2

(12)

(13a)

(13b)

(13c)

(14a)

(14b)

(14c)

(144)



Intersections With Straight Line

The intersection of a straight line with the helicoid is calculated by an iterative pro-
cess. The assumption is made that the surface function is locally quadratic. Then the
value of the function can be expressed by a truncated Taylor series as

2 .2
o) = o(F +8Q) = ¢(r) + S 3 (x) +5° 0 §0;a (15)
0 as

where ¢(r) is determined from equation (9), and the coefficient 8¢ (T)/3S is calculated
from

m
oS ox m

acp(f")___ 3 C 390(?) (16)

using equation (13) to compute the partial derivatives.
The final coefficient is given by

2 3. 3B 2
(@) _ cc Lo (17)
8S2 l m axz axm
=1 m=1
where
2
0 fP(I") - ghwz (18a)
Bxiz
Y ~~ 23
2 2 [ovx.
g ¢(a=2uxk+)_{]_+h(_vxﬁ+}_{.k_> (18b)
ax? |_c3 ¢ et &
~9 ~2 s~ 29
. _2vx. 2
2o®@ _ o™i Tk, h(.ﬁffk +f.3_> (18c)
o ¢t ¢



a2 ® (a ) 2hka

(18d)
axiaxj §’2 .
o) o) Tik ik, [T\ 7)) Tk (18e)
o, 3 2 |_ et ¢4
-2hwx.
Pp(@) _ ~2hex (181)

axk axi 52

The net result is a quadratic equation"for the distance S to the surface since the
surface function go(?) must be zero at the intersection

2 .2
() = o(T) +S_8_q_0(_f'.)_+S_ L@:O (19)
Let
2
A= 20k) (202)
ag?
B - fo(®) (20b)
as
C = 2¢(7) (20c)
Then
AS? £ 2BS+C +0 (21a)
or

A

The sign of the square root is determined by the ambiguity index 5 (of eq. (21b))
with respect to the region in which the ray tracing is performed. The ambiguity index
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is defined as

_~o(T,)

5 = ol
¢(rg)

(22)

where T, is any point in the region.
Equation (21) is not used when IAC/BZI < 10'4. A one-term expansion is then used
for the square root so that

s:-z(l_51>=§_01 23)

This procedure eliminated convergence problems caused by underflow in the vicinity
of the intersection.

The distance S to the intersection is used to compute a new reference point r and
the entire procedure is then repeated until the change in S is less than 10'5 of the value
already obtained. In general, only two iterations are needed.

The changes required to incorporate the helical duct in FASTER are shown in the
appendix. The input instructions are modified to include the following on card 2-2:

i,0,16,x%,y%,2°, L,R,a ith surface has helix axis parallel to x-axis
. 0 _0 _O .th . : :
i,0,17,y ,z",x ,L,R,a i™" surface has helix axis parallel to y-axis
. 0 _0 O .th . . :
i,0,18,z",x",y ,L,R,a i surface has helix axis parallel to z-axis

RESULTS AND DISCUSSION

The duct analysis routine was verified by using it for the 20~ and 100-centimeter-
thick water slab cylindrical duct problem previously run as shown in figure 1 (ref. 1).
Neutron number spectra essentially coincided with previously calculated spectra (O5R
and FASTER with cylindrical duct geometry) as seen in figure 2. The cylindrical duct
was simulated with the helicoid geometry subroutines by making L, the pitch, equal to
105 centimeters. Neutron number spectra at each detector point were calculated using
1000 histories. Computer time was 20 minutes per detector point, approximately double



that required for solution of the same problem using the cylindrical geometry routine, as
expected because of the more complex geometric description of the cylindrical duct,

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, June 2, 1969,
126-15-01-03-22.
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APPENDIX - LISTING

- Changes to FASTER for Subroutine HELIX

TO INCORPORATE SUBROUTINE HELIX IN FASTERy MAKE THE FOLLOWING CHANGES
SUBROUTINE 1.OCDUM

INSERT AFTER FAST0151
IF(MAX,GT,9) CALL HELIX(1,MAX=9»A(1sK)sXsXy»0,0,U(K))
IF(MAX.6T,9) G0 TO 160

SUBROUTINF GEOMIN

REPLACE FAST0532 BY
GO T0(232+2339235+260,255,282) 9»NGT
INSERT AFTER FAST0579
GO TO 290
282 DO 284 J=1,6
284 A(JeI) = AA(J)
NTR(I) = NEX + 9
INSERT AFTER FAST0616
IF(MAX.6T,9) CALL HELIX{1,MAX=00A(192K) oADMyADM» 0,0 ,FST)
IF(MAX,6T,9) GO TO 335 ’
INSERT AFTER FAST0619
335 CONTINUE

SUBROUTINE TRADUM

INSERT AFTER FAST2228
IF(NTP(K),LE.9) 6O TO 108
IF({M.GT,1) GO TO 192
ST{(1sK) = STT
SY(2sK) = STT + SP
CALL HELIX(3oKKE(NTP(K)=9) pA(1+K) ¢ XoCrSI(1,K)SR)
. IF(SB) 340,330.330
192 CALL HELIX(1eNTP(K)=O,A(1,K) s XsCySTTHFST)
IF(FLOAT(KK)*FST) 340,340,390
198 CONTIMUE

SUBROUTINE NORDUM

INSERT AFTER FAST2343

IFAMAXsGT,9) CALL HELIX(2,MAX*O9A(10T),3XsX9»0,0.C)
IF(MAX.GT,9) GO TO 35

INSERY AFTER FAST2355

35 CONTINUE

FASTO1%1
FASTO0151

FASTOS32

FAST0579
FASTOS79
FASTN579
FAST0579

FAST0616
FAST0616

FAST0619

FAST2228
FAST2228
FAST2228
FAST2228
FAST2228
FAST2228
FAST2228
FAST2228
FAST222R

FAST2343
FAST2343

FAST2355
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Subroutine HELIX Listing

€ ook ek ook ok e o Aok ok KRR AR R K AR AR A AR s Rk ok sk ok ok ko ki koo kK ke a kx HEL TX000

12

C /JARG/ = 1 HELIX PARALLEL TO X=AXTIS (I,JeK)2(1,2,3)=(XeYs»2) HELTX000
C /JARG/ = 2 HELIX PARALLEL TO Y=AXIS (I¢JeK)Z(2,3,1)12(Ye2ZsX) HELIX000
C /JARG/ = 3y HELIX PARALLEL TO Z=AXIS (I1:JyK)Z(3,142)=(ZsXsY) HELTX000
C SIGN(JARG) = AMBIGUITY INDEX HELTX000
C VARG(1) = REFERENCE VALUE OF X(I) AT WHICH THETA = 0,0 HELIX0N0
C VARG(2) = TRANSLATION OF HELIX AXIS IN X(J) DIRECTTION HELTX000
C VARG(2) = TRANSLATION OF HELIX AXIS IN X(K) DIRECTION HEL IX0nO
C VARG(4) = PERIOD OF HELIX ALONG X(1) AXIS HELTIX000
C VARG(S) = RADIUS OF GYRATION OF HELIX PERPENNDICULAR TO X(I) AXIS HELIXO000
"C VARG(g) = RADIUS OF HELIX CROSS SECTION HELIX000D
C WARG(1) = X COORDINATE OF ORIGIN OF RAY HELIX000
C WARG(2) = Y COORDINATE OF ORIGIN OF RAY  HELTIXN0O
C WARG(3) = 2 COORDINATE OF ORIGIN OF RAY HELIX000
C XARG(1) = DIRFCTIOM COSINF OF RAY WITH RESPECT TO X AXTS HELIX000
C XARG(2) = DIRECTION COSINF OF RAY WITH RESPECT TO Y AXTS HEL YX000
C XARG(3) = DIRECTION COSINFE OF ‘RAY ‘WITH RESPECT TO 2 AXIS . HELIXO0NO
C YARG(]) = DISTANCE ALREADY TRAVERSED ALONG RAY HELTX000
C YARG(2) = MAXIMUM DISTANCE ALONG RaY HELTIXO00N
C IARG = 1» COMPUTE VALUE OF MFLIX RETURNED IN ZARG(1) HELIX000
C IARG = 29 COMPUTE NORMAL VECTOR RETURNED IN ZARG(1)r,0.9ZARG(3) HELIXD0O
C IARG = 3+ COMPUTE DISTANCE TO HELIX  RETURNFD IN ZARG(1) HEL TX0n0
€ ok e o oo e o e o e o o oK B o oo o s s 8 s ok o ool e o o e o sl o B ol o ook T ok ool IR ok Rk ok ook oK ko ok HEL TX000
SURROUTINE HELIX(IARG JARGIVARGWARG)XARGsYARG,,ZARG) : HELTIX010
DIMENSION VARG(1)sWARG(1) s XARG(1),YARG(1)+»ZARG(1) HELIX020
DIMENSION XZ(3) ,X(3) ' C(3) +CN(R) HELIXDX0

DATA KOUNTsPYsTPT/0,3,1415927:6,2831R53/ HEL TXOun

DO 100 T=1,3 HEL IX050

ctn = XARG(I) C HELTX080

XZ(1) = WARG(I) + C({I)*xYARG(1) HELIX070

100 X(I) = X2(n HELTX0n0
NGT = 1ARG HELIX090

| = IABS{JARG) HFELIX100

J Z 1 41 = 3kl1/3) HFLIX110

K = J+ 1 = 3x(J/™) HFLIX120

TPL = TPI/VARG(4) CHFLIX130

GAM = 1,0/7(TPL*%2 + 1,0/VAPG(%) *%2) HELIX140

110 Dx1 = X(I) = VARG(}1) HFLIX150

- DX = X{J) = VARG(2) HELIX160

DXK = X{(K) = VARG(X) HELTX170

“UsM = SGRT(DXJ**Z + DXK**z) HELIX180

THE = 0,0 ) HFLIX18S%
IF(USM,G6T,0,0) THE = ATAN2(DXK,DXJ) = TPL*DX1 HELTX190

VeM = THE = TPIsFLOAT(IFIX((THE + PI)/TPI)) HELTX200

URG = YSM = VARG(S) HELIX210

PHI = UBG*%2 + GAMRYSM*%2 = VARG(6)%*%2 HELIX220
IF{NGT.6T,1) GO TO 120 HEL IX230
ZARG(1) = PHI HELTX2u0

60 T0 990 HELIX250

120 csT 2 DXJ/USM " HELIX260
SNT = DXK/USM HELTX270
et 2 «TPL*GAMXYSM HELIX2an0
CN{J) = UBG#CST = GAMAVSMXSNT/LSM HELIX290

ENLIK) = UBGASNT + GAMRVSM%CST/USM HELTX300

DPH Z 0,0 HELIX310
IF(NGT,.GT,2) GO TO 150 HELTIX320

00 130 1=1,3 HELIX3%0

130 DPH = DPH + CN(T)xx2 HELIX340
DPH = SQRT(DPH) HELYIX380

DO 140 I=1.3 HEL IX360

140 ZARG(I) = CN(I)/DPH HELIX370
G0 TO 990 HELIX3a0



150
160

170

iRr0

190

200

210

220

230

240
250

260
270

280

290

990
2000

No 160 L=1,3
oPH = DPH + C{L)Y*CNIL)
cCNtID) = GAM%TPL x%2

CN(J) = UBGASNT*#2/USM4CSTHE2+GAMASNTH(2, 04 VSMACST+ENT) /USMex2
CNIK) = UBGKCSTH%2/USMASNT R A2 wGAMKCSTR (2 0% VSMESNT=CET) /USMu k2

plald = 0.0

DO 17N L=1+3

nnp = DDP + CNAL)Y%C(L)*%2

CNLID) = TPL%GAM*SNT /USM

cnid) = SNTxCST#(1,.,0 = URG/USM)

1 + GAMR(YSME(SNT%%2 = CSTx%x2) = SNTRCST) /USM%%2
CN(K) Z «TPL*GAM®CST/USM

DO 180 L=1.,3

M =L+ 1 = 3x(L/3)

npP = DDP + 2,0%CMIL)%C (L) *C (M)
IFINGT.GT,3) GO TO 190

TOY = 0.0

KK = 1/JARG

SGN = FLOAT(KK)

STR Z 2,0%YARG(2)

H 2 0,0

NFH =0

DLS = 0,0

IF(PHT.NE.D,0) GO TO 200

IF(DDP) 2100250+210

IF(DDP.NE,0.,0) GO TO 210

DLS = »0,5%PHI/DPH

60 T0 250

IF(DPH.EG,0.,0) GO YO 220
IF(ARSADDP*PHI/DPH*%2) ,GT,1.0F=U4) 60O TO 220

ADP = ABS(DPH)

LS = ADPX(SGN = DPH/ADP)/NDP = 0,5%SGNxPHT/ANP
G0 TO 250

nLS = «DPH/0DP

H = DPHx%2 « DDPxPHY

IF(H) 230,250,240

NEH =3

GO T0 25%0

nLs = DLS + SGN*SORT(H)/DNP
IF(IODLS + TOT).LE.N,D) B0 TO 290
TOTY = TOT + DLS

IF((NEH,GT,0) ,AND, (NGT,6T,3)) GO TO 290
IFINEH,6T,0) GO TO 260
IF{ARS(DLS/TOT).LE,1,0E=5) GO TO 2R0
IF(NGT.GT,4) GO TO 280

DO 270 L=1,3

XtL) = XZAL)Y + TOT%C(L)

NGT = NGT + 1
60 TO 110
STB = 707

IF(DLS.LE,0+0) STB = STB + AMAXI(=DLS»1.0E=5xT0T)

ZARG(1) = ST '

KOUNT = KOUNT + %

IF(KOUNTLE100) WRITE(6+2000INGT Yo JeKeKKyNEH»XyCyDNP+NDPH,PHT,
1TOT.DLS,»STB

RETURN

FORMAT(1Xy61601P6EL12,4/3TXe6EL2,.4)

END

HELIX390
HELIX400
HELYXU10
HELIXH20
HEL X430
HELIX400
HEL TX4%0
HELIX480
HEL X470
HEL TX4AR0
HELIXURY
HEL IX400
HELTIX5Nn0
HELTX510
HELTX520
HELIX530
HELTX540
HELI¥S50
HELIXS60
HELTX570
HELTX580
HELIXSo0
HELIX&NN
HELIX610
HELTX620
HEL 1X630
HFLIX640
HELIX650
HELIX660
HELIX670
HFL TX6R0
HEL TX600
HELIX700
HELTX710
HELTX720
HELIX730
HELIXT40
HELIX7S0
HELIX760
HELIX770
HELIX780
HFLIX79n
HEL X800
HFELYX&81n
HELTIX820
HEL IX830
HELIX840
HEL X850
HELIX860
HELIX870
HELTX880
HELIX890

‘HELIX900

HELTX910
HEL TX920
HELIX930
HEL IX9u0
HEL IX950
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Figure 1. - Problem configuration.
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